All posts by Dan Bloomer

Dan is the part time Manager of LandWISE Inc and one of the small group that established it in 1999. For the rest of his professional life he runs Page Bloomer Associates, a consultancy focused on sustainable land and water management and community development

LandWISE’s New Precision Agronomist

Luke Posthuma has joined the LandWISE team as our Precision Agronomist.

Many LandWISE members and followers will know Luke from GrowMaps, a precision mapping and consulting company he formed in 2016.

At GrowMaps, Luke has been helping horticultural and arable farmers identify and manage spatial variability in their crops to improve their farm profitability. A large portion of this work has involved soil mapping, yield data analysis and soil sampling to create VR fertiliser and planting recommendations to go into a range of tractor GPS controllers. Having a passion for sustainable land use, Luke focused on improving farm profitability through more efficient utilisation of inputs including fertiliser, seed and irrigation.

This and previous experience  makes Luke ideal to help Georgia and Dan with the Future Proofing Vegetable Production and Smart Tools for Orchard Drainage projects we have underway. 

Having a reasonably hands-on practical approach to farm advising, Luke enjoys getting involved with farmers and using data to improve practical management decisions on farm, whether it be identifying side-wall compaction from a maize planter, nutrient deficiency issues or soil type challenges. A key part of his work has been to identify and quantify agronomic issues, and create a management plan with the farmer and their farm adviser.

Luke graduated from Massey University with a Bachelor of AgriScience (Horticulture) degree. He gained a number of scholarships and is a recognised Massey Scholar.

Field Events Coming Up

Levin Field Walk

In conjunction with Potatoes NZ, we have a field event in Levin on Wednesday 27 February. The content will be of interest to all growers and supporters – it’s not just potato topics. Of note will be discussion about the Teralytic probes that have been installed. Plant & Food will demonstrate the Nitrate Quick Test. We’ll be updating people on the Future Proofing Vegetable Production project (co-funded by Horizons Regional Council, Potatoes NZ, Gisborne District Council, Ballance AgriNutrients and LandWISE).

2.30pm Chris Pescini’s Farm
52 Kimberley Rd, Levin (old Hort Research station)


R & D TOPICS
Teralytic Probes Trial, TPP Spray Trials, Tamarixia Release Trials, Regreening, Powdery Scab, PMTV Update, Future Proofing Vegetables, Urea fertilsers for Vegetables, Quick N Test, Climate Change, Monitoring nitrates in drainage water
Call Gemma 027 2404682 or Iain 027 2401092 with any last minute queries

Installing Teralytic probes in Levin potato paddock

Gisborne: Early March

We have not yet set a date or place, but we will have a similar vegetable field day in Gisborne in early March. It will cover the same topics, omitting specific potato issues. Newsletter subscribers will get a notice soon.

Call Pip with any queries: 022 507 1355

Subscribe to receive the free newsletter here

Future Proofing Vegetable Production Funders

Fertiliser Calibration Assessments

One of the four key areas within the Future Proofing Vegetable Production project aims to improve the accuracy of fertiliser applied. This work is part of the MPI Sustainable Farming Fund “Future Proofing Vegetable Production” project, co-funded by Horizons Regional Council, Potatoes NZ, Gisborne District Council, Ballance AgriNutrients and LandWISE.

Growers were invited to participate in having their equipment assessed. Equipment was tested with growers in both Horowhenua and Gisborne. Ten fertiliser applicators have been assessed through working with eight growers. Multiple settings or products were tested for some equipment.

In-Field Fertiliser Applicator Calibration Test

Performance assessment of fertiliser application equipment provides information on actual rates applied and the evenness of application. Ensuring that fertiliser is applied evenly minimises the risk of leaching if over application occurs, or the risk of yield penalties if under application occurs where nutrient availability is limiting plant growth. Growers were confident their equipment was spreading evenly, however the assessment results show there is room for improvement.

Fertiliser application equipment measured can be split into two main categories:

  1. Broadcast fertiliser spreaders (spinning disc, oscillating spout)
  2. Direct placement machines (banders, side dressers and planters)
Figure 1: Examples of fertiliser application methods commonly used in vegetable growing systems: broadcast (left), potato planter (centre), and modified into 2 row bander (right)

Methodologies

Different methodologies are appropriate for broadcast versus direct placement equipment.

  • Broadcast fertiliser spreaders were tested according to the FertSpread Protocol: see www.fertspread.nz
  • Power take off driven placement equipment (banders or adapted oscillating spouts) were assessed by placing buckets under the outlets and collecting fertiliser for a measured time (~30 – 60 Seconds). By determining travel speed the application rate can be calculated.
  • Ground driven equipment (most side dressers and planters) were assessed by collecting fertiliser from outlets over a set distance in-field or from 20-wheel rotations in static testing.

Tests were repeated twice, however where results between tests appeared quite different, the test was repeated up to six times. For some machines multiple settings or fertiliser products were tested.

Direct placement machines were assessed using a calibration calculator that has been developed over the period of testing this equipment as there is currently no industry accepted assessment calculator available.

The draft fertiliser calibration calculator for the assessment of direct application machines is included in the supporting documentation. This spreadsheet calculates and reports a wide range of statistics to assess performance.

Three key performance indicators are suggested:

  1. Target application rate vs. actual rate applied
  2. Variation between outlets/spouts
  3. Variation between test runs

Results

The application variability of the direct placement equipment tested varied quite markedly; from 0.4% CV to 26.4% CV.  A summary of the test results for direct application equipment is provided in Table 1.

Table 1

All but one of the machines tested are within the SpreadMark accepted performance for broadcast spreaders applying nitrogen-based fertilisers.

The actual rates of fertiliser applied varied from the target rates. In one case the actual average rate applied was 48% of the target rate, the greatest over application was 152% of the target rate.  

Fewer broadcast spreaders were assessed as direct placement machines are more commonly used in intensive vegetable production systems. Table 2 provides a summary of the two broadcast spreaders assessed.

Table 2

Figure 2 gives a snapshot of part of the report produced through the FertSpread website. In this example, if the grower reduced their bout width from 22.5m to 19m, the machine performance would be within the acceptable level for nitrogen and non-nitrogen fertilisers.

Discussion

Assessments have been completed on a range of fertiliser application equipment in both Levin and Gisborne. Most of the equipment tested has been direct application (banders, planters and side dressers), rather than broadcast spreaders. Fertiliser applications for vegetable production are predominantly applied as banded strips along the bed or scarified during planting or as a side dressing. There is currently no accepted protocol for the assessment of this type of equipment.

Direct fertiliser application (banders, side dressers)

To enable the assessments to be completed within the project, a draft protocol and fertiliser calibration calculator for direct applicators has been developed and is being refined. This is currently in an Excel spreadsheet which has been developed as we have been testing equipment. The number of tests required and the statistical analysis to report the suggested three key indicators is still to be discussed and agreed upon. This concept and draft calculator will be taken to the annual Fertiliser and Lime Research Centre conference in February 2019 for advice from leading experts. The acceptable level of equipment performance and report outputs provided to growers will be discussed.

It is currently accepted for broadcast fertiliser spreaders that the coefficient of variation, CV, should not exceed 15% for nitrogen fertilisers and 25% for non-nitrogen fertilisers. The method of calibrating fertiliser rates applied ‘through the spout’ to achieve target rates are accepted, however a different statistical analysis is required for an assessment to be completed and best practice or acceptable levels of variation need to be defined. It is suggested that a CV of 15% for nitrogen or even non-nitrogen fertilisers is well below the capability of these direct placement applicators. Machinery in good working order should achieve a CV of much lower than this, but an acceptable CV is not currently defined.

This has opened discussion around how the acceptable CV is determined and if this is applicable in vegetable production systems. Our understanding is that accepted variance is based largely on pasture value and response curves, we query what values are appropriate for high value vegetable crops. Excess fertiliser increases leaching risk, insufficient fertiliser can make a crop unsaleable through quality loss. This is another area that it is felt important and worth further investigation.

The results of the tests carried out on direct placement equipment highlighted several key areas to address:

  • The target rate is not often achieved, the results showed machines are both over and underapplying, which have implications for leaching risk and potential marketable yield penalties or decrease nutrient use efficiency.
  • In some cases, the outlets are not applying fertiliser at equal rates. The cause of this is different for each machine. However, the growers were keen to investigate why one outlet was applying a lower rate. In one case the grower was able to fix the equipment and significantly reduce the variation between outlets.
  • One machine resulted in different rates being applied in each test. This is a greater concern for older equipment that is worn and manually operated hoppers.  
  • The amount of the fertiliser in the hopper appeared to affect the rate of fertiliser applied. This suggests that as the hopper empties that rate applied to the beds decreases. This also appeared to change significantly with the bulk density of the fertiliser product. More testing is required to investigate this further. There may be a minimum amount of fertiliser (product/bulk density dependent) required to be in the hopper to achieve an even application.

The interest and engagement of growers through testing their equipment has built awareness. Once a protocol is developed, the spreadsheet will then be developed into a tool for growers. Prior to next season, workshops demonstrating how to calibrate equipment, use the tool and interpret the report will be run in Gisborne and Levin, with the possibility of visiting additional regions. Conversations with growers during visits have shown there is good support for an event.

Broadcast fertiliser spreaders

Broadcast spreaders are less commonly used, and only two-disc spreaders were assessed. The results showed that at the current bout width used neither machine was achieving an acceptable CV for nitrogen fertilisers. One of the two was on the limit of acceptable for non-nitrogen fertiliser products. This suggests that the growers need to change either settings and/or bout width to achieve an acceptable CV.

Reports are generated for all equipment we tested and distributed to growers. Some growers have requested that we re-test their equipment after they have made adjustments or prior to next season.

Vegetable Irrigator Assessments

Introduction

Irrigation assessments are important for ensuring the correct amount of water is applied to avoid yield lose due to moisture stress. However, excessive irrigation is a cause of nitrate leaching. A key aspect of our Future Proofing Vegetable Production project addresses keeping nutrient in the root zone. Through assessing irrigation uniformity and depth applied, machine and irrigation management can be improved.

This work is part of the MPI Sustainable Farming Fund “Future Proofing Vegetable Production” project, co-funded by Horizons Regional Council, Potatoes NZ, Gisborne District Council, Ballance AgriNutrients and LandWISE.

Methodologies

The irrigator assessments followed the ‘bucket test’ protocols as described in the Traveling Irrigator Performance Quick Test. In brief, buckets were place at 1m intervals across the path of the irrigator (see Figure 3). The speed of the irrigator was measured as it travelled over the buckets. Once the irrigator had passed over the buckets, the volume of water collected in each bucket was then measured. The data was entered into IRRIG8Lite software and reports generated.

Bucket test layout under a traveling boom irrigator assessed as prt of Future Proofing Vegetable Production project.

Results

All three irrigators tested were traveling booms. The performance assessment was carried out twice on one of the traveling booms. An example of the distribution graph is provided in Figure 4. Of the four tests completed, the distribution uniformity assessment for two were ‘adequate’ and two were ‘poor’. The distribution uniformity for the four tests were 0.72 and 0.75 for the ‘adequate’ performing machines and 0.6 and 0.45 for the ‘poor’ performing machines.

Example distribution graph from a traveling boom irrigator assessed as part of the project

Discussion

The results so far show that there is room for improvement in the performance of the irrigators tested so far. Higher than average rainfall has meant irrigation events have not been required as often so far this season. However, some growers briefly ran their irrigators to allow tests to be completed. We will continue to assess irrigators as we are able to access them over the coming months.

Survey of Drainage Problems in Orchards

The MPI Sustainable Farming Fund “Smart Tools to Improve Orchard Drainage” project was initiated in response to extreme weather conditions experienced by pipfruit growers in the late season (March – June) harvest of 2017. It is co-funded by New Zealand Apples and Pears Inc.

A survey conducted over 3 weeks in November and December of 2018 covered 2,238 hectares of pipfruit growing orchards. Conducting the survey with growers via face-to-face interviews produced a greater number and depth of answers, however certain details were still difficult to obtain. Many growers were hesitant to provide or lacked confidence in estimations of the extent and area of wheel rut damage as a result of poor drainage.

To help with consistent assessments, we created a four panel photo scale of drainage issues found in orchards (see below). Growers interviewed considered the scale realistic and relevant. They felt able to correctly match problems areas in their blocks to the photos, but differed in their assessments of how much of a problem it might be.

The key impacts on operations identified by the survey were predominantly categorised into three areas; tree health, access, and labour. Almost all orchardists surveyed believed that poor drainage was contributing to poor tree health (either visibly or evident through low yield) or causing tree deaths (up to 10% in one extreme example). Many orchardists remarked on wheel ruts resulting in staff injuries (due to ladder slips in mud, tripping, or the impact of driving over uneven surfaces). Labour availability was also affected in severe cases where orchard ponding and ruts were the reason some contracting groups did not want to work at those sites. In all cases where extreme damage was present, access for sprayers, and tractors hauling harvest bins was impeded, and occasionally impossible. This meant that costs were incurred as a result of delaying harvest windows, slowing the pace of operations, and risking greater levels of disease at an already busy time of year.

Situational factors common among the orchards studied included:

  • Frequent passes by heavy orchard machinery for many months of the year (7 – 11)
  • Low spots in the in the inter-row were the worst affected
  • Shaded canopies associated with 3D training and mature plantings

The area affected was 44% of the area surveyed (1,479 ha).

Tree Health

Tree trunk width comparison on a poorly drained block
left: high elevation spot, right: low elevation spot

Tree health suffers as a result of poor drainage and water-logging of the soil. This was evident in the Motueka and Richmond site visits, where trunk diameter was clearly smaller to the untrained eye in low spots where ponding and wheel ruts were severe. The same observations were made during site visits in Nelson and Hawke’s Bay.

Other important comments included a noticeably lower yield from trees where drainage problems were evident, and some bins where mud had covered fruit during harvest resulted in a greater number of fruit rots in post-harvest storage. One grower also mentioned that the fruit on Fuji varieties developed russet in the worst affected areas.

Access to the orchard is critical at certain times to complete operational tasks. Where an orchard has particularly severe drainage problems the wheel ruts may be so extreme that tractor or sprayer axles drag through the mud, meaning that they are stuck or unable to enter the block. This has led to some orchardists hiring helicopters to apply fungicides when application during a specific time window is crucial. This is an expensive exercise, and is unable to be utilised for insecticide sprays, as the application method is not effective at reaching the internal area of the canopy. The mud and ruts from poor drainage make harvesting difficult and time consuming as tractors require towing (by another or multiple tractors) out of the mud when they become stuck.

Modelling Drainage in Orchards

As part of the MPI Sustainable Farming Fund “Smart Tools to Improve Orchard Drainage” project co-funded by New Zealand Apples and Pears Inc., we have been modelling drainage on case study orchards in Hawke’s Bay and Nelson.

Aerial images can show orchard canopy differences and indicate where tree growth is slowed or trees have died. This can be the result of poor drainage.

Aerial image of Illawarra orchard in Gisborne showing visible areas of missing and sparse canopy

We obtained LiDAR elevation data from the Hawke’s Bay Regional Council and Gisborne District Council which allowed us to create very detailed contour plans in ArcGIS – provided to us by ESRI and Eagle Technologies. An example is shown here, using LiDAR from Gisborne.

Detailed contour map of apple block at Illawarra in Gisborne,
created from LiDAR data provided by Gisborne District Council

We can see that the block should drain from the high left (brown) corner to the low right (blue) corner. But when we examine the ground profile along the rows, we see the grade is not even.

Uneven grade along the inter-rows stops surface drainage, keeping soil wet for longer and creating conditions for pugging and wheel-track rutting.

A similar story is seen in the Hawke’s Bay case study orchard. Using HBRC LiDAR data, another contour map was made.


Detailed contour map of apple block at Evenden in Twyford,
created from LiDAR data provided by HBRC

Again, inspecting the ground profile shows areas where surface drainage is held up, keeping soils wetter for longer.

Profile of inter-row showing areas where surface drainage is held by rising contour.

Our next step is to survey blocks with high accuracy RTK-GPS, measuring the profiles on the ground. We can use these profiles to design new inter-row profiles, and determine what cut and fill will be needed to ensure the rows can drain effectively. We will mount the GPS antenna as high as we can to avoid trees blocking the satellite signals.

A GPS antenna mounted on a 2 m mast to avoid signal obstruction. We have a 3 m mast option for larger, older orchards. The aerial connects the rover GPS on the quad, to a base station that determines and corrects for signal shift to give best possible accuracy

Many thanks to all the people at Illawarra Orchard, T&G Orchards, Bostock Orchards and to GPS Control Systems for your continuing support with this project.

Herbicide Resistance

Herbicide resistant weeds are a real and increasing issue globally and evident in New Zealand. Herbicide resistant ryegrass is for example, a problem in both arable farms and vineyards.

Atrazine resistant Amaranthus (Trevor James photo)

We are working with Trevor James and AgResearch in a project focused on improved weed control and vegetation management to minimise future herbicide resistance. The project is funded through the Ministry of Business, Innovation and Employment (MBIE) and major co-funder, the Foundation for Arable Research (FAR).

The project has four main work areas:

A Lincoln University team is seeking to identify the weeds most likely to develop herbicide resistance in new regions. Outputs will be a risk index that indicates weeds with a history of herbicide resistance, herbicide resistant weeds that pose the greatest risk if introduced and weeds that have a high likelihood of becoming resistant.

An AgResearch team seeks to identify and describe the drivers of on- and off-farm herbicide practices to more successfully address factors across the supply/value chain that increase the risk of herbicide resistance.

Grasslands and Massey University researchers will develop genotyping and seed bioassays to create ‘quick tests’ for resistance in key weed species. They will also model spread scenarios for resistance genes to determine the greatest risk of resistance i.e. from resistance developing on-site or from dispersal of resistant weeds. They are starting with perennial ryegrass before adding other species for screening.

We are in a team led by Trevor James looking to develop new non-herbicidal interventions (e.g. robotic weeders, abrasion technologies and smart cultivators) and the use of cover crops (in collaboration with FAR) for both managing existing and avoiding new instances of herbicide resistance.

Included in this section is ‘rediscovering’ Māori management practices such as traditional strategic resting and natural pathogenic organisms to target the soil weed seed bank. While virtually all our problem weeds are introduced from Europe and the Americas, the holistic approaches typical in Māoridom seem fully relevant to a systems based approach to weed management. A second group in this team is to isolate and evaluate natural pathogenic fungi and bacteria for their ability and efficacy to kill weed seeds.

LandWISE members are well-aware of the risks of herbicide resistance. It has been an aspect of LandWISE projects since the early 2000s when we began promoting strip tillage and no-till systems to maintain soil quality and reduce energy inputs. The extra pressure on herbicide controls when physical cultivation is reduced saw us publish charts of herbicide groups for different crops. Maybe it is time that work was brought up to date!

More information about this project is available on our project pages here>

Smart Tools to Improve Orchard Drainage – Progress report

We’ve made a good start on the orchard drainage project, visiting sites in Gisborne, Hawke’s Bay and Nelson.

Many thanks to Illawarra Orchard, T&G Global, MrApple, Bostocks NZ, KONO Horticulture and Waimea West for your active involvement.

The sites confirm the need to address drainage and the consequent track rutting and associated problems in each of the regions. We have begun our survey of sites and regions, aiming to get some objective assessment of the amount and severity of problems, where they most occur and what solutions may be applied. We already see there will not be a one-fix-for-all!

The Gisborne site that initiated the project looks better than it did after harvest 2017. But the issues remain, and we’ll be surveying and planning how to reshape inter-rows to allow surface drainage.

Gisborne orchard after harvest 2017

In Motueka, our preliminary site visit saw the same problems and similar severity. The solution will not be the same, as the land contour is very different and the are no clear exit points for water once it does leave the tree blocks.

Severe rutting in Motueka Orchard

The orchard team has been applying a range of drainage remedies with varying success.

A drainage sump installed in Moteuka. Sumps widely used in low spots, but prone to blocking after a short time.

We visited a number of Hawke’s Bay sites on different soil types. One block in Twyford is being replanted, and pre-plant levelling was carried out. We are looking to trial inter-row levelling in established blocks, with surface water moved to tiles installed at the end of rows.

Installing novaflow in Twyford orchard – pea metal fill to ground level to facilitate entry of surface drainage for inter-rows

 

Future Proofing Vegetable Production – Project kickoff

We have successfully completed the first milestone in the new and important Future Proofing Vegetable Production project.

Project Team Establishment Meeting

Two project establishment meetings were held, one in Levin at Te Takere and one in Gisborne at Gisborne District Council. At both there was a strong presence of growers and regional council representatives.

The Levin meeting also brought together science support providers from Landcare Research, Plant and Food Research and Groundtruth, and other stakeholders including the Foundation for Arable Research, Ballance AgriNutrients and Potatoes New Zealand.

Levin project establishment meeting

The strong engagement and commitment from all parties to collaborate highlights the importance of the project’s aims; reducing nitrate losses from intensive vegetable production.

Visit to Woodhaven Gardens and site of proposed wetland to reduce nitrates and sediment in drainage water

A presentation by Groundtruth at the Levin meeting showed their work in the Wairarapa, aimed at reducing surface water nitrates by installing wetlands. This helped raise interest and potential for use in Arawhata.

We also presented the Future Proofing Vegetable Production project in Gisborne as part of a Council meeting outlining to growers the requirements of Farm Environment Plans.

Good grower attendance at Gisborne meeting introducing Farm Environment Plans for horticulture and cropping

Follow-up “grower only” meetings were held in Levin and Gisborne to further work through project ambitions and activities and to enable growers to ask direct questions and give unconstrained opinion. Both meetings were very positive and confirmed engagement and a desire to genuinely review farm practices. The need to have good practices that can realistically be applied within the many operational constraints that growers face was reinforced. There are many operations to complete and often very tight weather and crop development windows in which to act.  

Arawhata workshop on common pool resource management

The concept of common pool resource management was introduced at the establishment meetings. Using Elinor Ostrom principles, it involves all stakeholders taking responsibility and determining how to collaboratively manage the resource fairly and sustainably. In the context of this project the common resource could be contributions to the catchment’s nitrate load.

A second Levin meeting readdressed the topic and considered two potential management approaches.

  1. Pooling nitrate leaching allocations and managing them to maintain the overall catchment losses to be within targets.
    This approach acknowledges that some places may more easily limit nitrate losses and their savings could be transferred to help another area where losses are higher. It would in effect be a “cap and trade” model. Fresh vegetable growers did not think there would be great scope for this as their operations are too similar. However, they did note that within any individual property there are still areas where no nitrates are applied and cut and carry cropping may provide a net benefit.
  2. Intercepting and removing nitrate from drainage water.
    Surface water can be passed through wetlands and anaerobic zones to both absorb nitrates and to convert nitrate to N2 gas. Subsurface drainage flows can be intercepted and treated through high carbon woodchip bioreactors to convert nitrate to N2 gas. In both cases the N2 is harmlessly released to atmosphere. Levin growers support trials of both approaches. Three wetland sites were offered, and planning is underway for their design and development. A woodchip bioreactor site was offered and subject to further research will be used as a trial.

A key of common pool resource management is understanding that resource. Growers are keen to establish baselines, not only of grower good practice, but of the ecosystem. That includes developing our understanding of nitrates in surface water as they move through the catchment, and if possible, improving our knowledge of nitrates in drainage and ground water.

Grower Good Practice Survey completed Levin and Gisborne

The Good Practice Survey has covered most of the cropped area in each region.  In both regions, it was resolved to base the survey on information farmers are required for farm environment plans. While the two councils have adopted different templates, there is considerable similarity.

The survey used was based very strongly on the Fertiliser Association’s Code of Practice for Nutrient Management.

Growers note the management practices do not apply solely to nitrates. Both growers and councils have expressed interest in extending the project’s breadth to consider phosphate and sediment management.

Groups and farmers supported to build capacity and capability

To date the focus has been on establishing the project, ensuring common understanding of its aims and objectives and readying for work starting over the spring and summer period.

Nitrate test strips to assess available soil nitrate have been distributed to project farms in Levin and Gisborne and farmers have been trying them out. All the required resources for farmers to undertake testing themselves have been brought together as a “Test Kit” containing test strips, extract solution, test tubes and soil sieves. We will be running workshops as required to ensure appropriate sampling strategies, sample processing and nitrate calculations are understood and test results are valid.

Each farmer is being encouraged to undertake some form of trial comparing a “new” management practice with current practice. A number of sites have been identified.

Woodhaven Gardens in Levin has made a 4 ha site available for any trials the group wishes to run and other growers wish to collaborate. In Gisborne, growers are also keen to participate, and we are working through which catchments and operations provide best opportunities to effectively reduce nitrate impacts.

A number of potential trials are being evaluated. Common to many is using the Nitrate QuickTest to assess available soil nitrate and modify fertiliser prescriptions. Others include assessing new fertiliser products that are designed to minimise losses, reducing base application rates, and testing biological products that are showing increased growth and reduced leaching in pastoral systems.

We will help growers design the trials, support trial establishment and monitoring and help with harvest and data analysis. Our aim is to increase the knowledge of successful farm trialling which will have legacy benefits when farmers have other questions they want to test or when reviewing information given to them by sales people.

Horizons Regional Council and Massey University have appointed a PhD candidate to undertake a study in the Arawhata Catchment in parallel with our project. The working title of the research is, “The capacity of grower management to reduce nitrogen losses to Lake Horowhenua”. The intent is for the PhD research to independently monitor the effectiveness of the different management strategies trialled.

Sites for nitrate mitigation trials identified

In both regions, farmers are keen to include testing of waterways that pass through farmed areas. We have obtained quick test strips for nitrates in drainage water. These are ten times more sensitive than those used for the soil nitrate testing. At present, we are identifying sub-catchments and drainage networks that can be monitored and developing protocols for data collection. We are planning to follow key drains from above cropped areas, monitoring above and below each farm and at regional monitoring sites where available. Both Councils have indicated support for this initiative.

As noted, three potential wetland sites and one woodchip bioreactor site have been identified and these are being evaluated. Landcare Research will be involved in bioreactor design.

A visit to two potential wetland sites in the Arawhata Catchment was made with Horizons’ Wetland coordinator and plans are being developed.

Inspecting a site for wetland establishment

We are keeping in communication with Massey University’s researchers investigating a bioreactor in sand country in Bulls.

We are also involved with a Queensland group testing different bioreactor designs in a range of environments and aim to increase our collaboration as our own work progresses. They have a planned study group and tour of sites in November.  

 

 

Trials and Extension Role Available

With an increased work load, we’re looking for a self-motivated person to  join us. You’ll be curious about transforming agricultural practices, keen on technology and pragmatic. You’ll enjoy working with growers, researchers and tech folk. 

We’re not quite sure what to call the job: coordinator, advisor, officer? We know it offers diverse activities and needs excellent communication skills and practical knowledge of horticulture and technology. For the right person, this is a role with considerable potential to grow.

Your role will be to help run trials and extension activities and be part of identifying opportunities to improve economic and environmental performance in horticultural production.

We’ve just started new projects.

Our “Future Proofing Vegetable Production” project has a significant element of on-farm monitoring and field trials to help assess the realistic approaches fresh vegetable growers can take to reducing the loss of nitrates.  It includes using new techniques to monitor soil nitrate levels, running on-farm trials to test new approaches, calibrating fertiliser application and irrigation equipment and testing new nitrate mitigation techniques.

Our “Smart tools to improve Orchard Drainage” project is using high accuracy GPS to map and model orchard drainage, and control land shaping equipment to ensure surface water can flow off during heavy rain events.

The LandWISE MicroFarm has just been land levelled and we are monitoring the effect of that, while we wait for a new series of cropping trials over coming years. In the past we’ve tried manipulating peas, changing bean planting arrangements, and mapping onions from satellites, UAVs and tractors. Now we’ve got a list of public and private trials in waiting.

Previous LandWISE projects include precision mapping vineyards to increase juice quality,

testing a small autonomous weeding robot,

the impact of banding fertiliser rather than broadcasting it, and how changing irrigation nozzles can affect application uniformity.

We prepared guidelines and calculators to calibrate fertiliser spreaders,led work on soil quality, novel crop canopy assessment technologies and tested satellite-augmented GPS positioning.

And of course, we helped introduce RTK-GPS and Autosteer, pioneered strip tillage and worked to prevent wind erosion and improve soil resilience by adopting minimum tillage techniques.

If you think this is the job for you, please send us your CV and a letter explaining why you’re the perfect candidate. Applications close very soon on Thursday 20th September 2018. We look forward to hearing from you!

Job Description here>

Email a query