Category Archives: Conference

LandWISE 2017 – Our Platinum Sponsors

Thanks to Our Loyal Platinum Sponsors!

The annual LandWISE agritech conference is all the better for the stability of its key sponsors. Who are they and what are the links?

In 2003 we ran our first ever two day conference with Hawke’s Bay Regional Council the main sponsor. This support has continued throughout with Hawke’s Bay Regional Council one of our three platinum sponsors again in 2017, our 15th Annual conference.

Hawke’s Bay Regional Council is charged with responsibility for the environmental and economic well being of our region. LandWISE has always had this twin focus at farm scale. Our projects typically consider how we can help farmers be financially sustainable in the short term and in environmentally sustainable in the long term. It seems to us these two are interlocked.

In 2013 John Deere became a conference Platinum sponsor and 2017 marks their fifth year in this role. We are delighted that John Deere is once again a Platinum Sponsor of LandWISE Annual Conference.

This long term support  from a company focused on helping farmers through provision of leading technologies also fully matches our society objectives and the theme and purpose of Conference 2017: Are we ready for automation?

BASF Crop Protection joined the Platinum Sponsor group in 2014, the same year they took up sponsorship of the LandWISE MicroFarm. Once again we see a clear alignment with a company focused on developing and supplying products to help farmers achieve their goals.  We experience this at the MicroFarm with BASF Crop Protection and FruitFed Supplies combining to ensure our research crops are  maintained as effectively and efficiently as possible.

We have many other core supporters, not least Ballance AgriNutrients, a conference supporter since 2010 and sponsor of the MicroFarm since 2014.  We value their sponsorship which includes significant input from Horticulture Specialist Mark Redshaw, currently a LandWISE Board member.

MicroFarm pH Mapping

GrowMaps’ pH testing equipment at a Papakura trial site

GrowMaps this week completed the first comprehensive soil pH mapping at the MicroFarm. GrowMaps will have a trade display at the LandWISE 2017 Conference and will be taking part in the Horizons Regional Council field session at the Centre for Land and Water.

GrowMaps principal Luke Posthuma completed the survey, and says his observations as the survey progressed suggest there is a reasonable spread of pH across our relatively small area.

As well as Veris sampling, Luke took a number of soil samples for verification and calibration checks.

The Veris equipment also maps soil electrical conductivity (EC) down to 60cm. Soil EC is a measurement of how much electrical current soil can conduct. It is often an effective way to map soil texture because smaller soil particles such as clay conduct more current than larger silt and sand particles.

Part of the Veris pH mapping is post-survey processing to create the most reliable result. We await the processed maps with considerable interest.

We previously had a similar soil conductivity map provided by AgriOptics and it will be interesting to compare the results.

Variable Rate N Fertiliser – the Value Proposition

Adrian Hunt is a crop scientist at Plant and Food Research.

He recently completed a PhD at the University of Tasmania, investigating Pre-Harvest and Post-Harvest factor effects on the quality of onion bulbs exported to Europe for counter seasonal supply.  He now works across the vegetable and arable sectors to improve yield, profitability and environmental outcomes.

Together with colleagues Joanna Sharp, Paul Johnstone and Bruce Searle, Adrian has been investigating the value proposition for variable rate fertiliser application.

The technology to deliver variable rate fertiliser in an automated manner has advanced substantially in recent years. This has been aided by new or adapted spreading technologies coupled with location awareness using GPS (Global Positioning System). It is now technically possible to distribute fertilisers in a wide range of spatial patterns within a paddock, however the value proposition of variable rate fertiliser application is not thoroughly understood.

The Plant and Food team looked at the difference in productivity, profitability and potential environmental impact of a range of spatial management scales.

Based on a sampling grid of 105 points in a Hawke’s Bay paddock and used mineral N and a N mineralisation assay to quantify the underlying variability in N processes/cycling within the paddock they “grew” both irrigated and unirrigated maize in the crop simulation model APSIM Next Generation for the 105 sampling locations for 35 growing seasons, using long term weather data.

Adrian will present this work and the results at the LandWISE 2017 Conference in Havelock North.

Report on Australian SPAA Expo 2017

Hugh Ritchie reports from the 2017 Expo

(C) SPAA

The Society of Precision Agriculture (SPAA) is a non-profit and independent membership based group formed in Australia in 2002 to promote the development and adoption of precision agriculture (PA) technologies.

I attended the SPAA expo in March this year which was a grower focused day to present the latest tools and services available to growers. All speakers were service providers or users of the technology as opposed to researchers presenting their studies. This made for a day of very applied learning.

A common theme of the day was that tools selected had to deliver a positive return; i.e. they had to earn their keep. This was very good to hear as I feared I would be seen as a laggard to comment on the lack of variable rate and prescription maps. Most of the speakers identified a problem and the use of tools to find a solution.

There was also a range of farm types and again the message was any one can use PA concepts and you do not need to have high tech tools to practice PA.

The work with Near Infrared, Infrared and Short Wavelength InfraRed has come a long way and the work being done by Dr Ian Yule from Massey University leads the way. Of special interest was a camera manufacturer who could allow you to choose which bands you required and build a camera to suit at an affordable cost, putting this technology in everyone’s hands.

So, if we can do the research around what we want to sense and which wavelength it requires we could get real time data to enable prescriptions without the need to ground truth. This would be the next major leap forward in PA tools.  

Counting buds and berries

James Beech and Tony Cooper are data scientists and the principals of Precision AI Ltd. Tony and James will present to “LandWISE 2017: Are we ready for automation?” and discuss how machine vision and machine learning can be used to automate such things as counting buds, shoots and fruits in orchards and vineyards. 

Capturing quality imagery with changing light conditions, when your target is hiding behind leaves and you are traveling at speed on bumpy ground is quite a challenge. Identifying and quantifying the things you are interested in is a challenge as well.

What are the tools that can help? How close are we to automatically collecting this type of data?

James has over 15 years’ experience in software development, advanced analytics and data visualisation.

James specialises in open data, data infrastructures, business intelligence dashboards and predictive modelling. James is has particular interest in the application of big data through the use of statistical and analytic techniques to solve business problems. His experience spans across financial services, telecommunications and the agricultural sectors.

Tony has a distinguished track record in predictive analytics and data mining. His specialties include machine learning and computer vision. 

Tony has made exciting advances in quantitative research and received industry accolades. He holds a Bachelor of Science (Hons.) in Statistics and Computer Science from Massey University and a Master of Science in Statistics from Stanford University (USA).

Tree climbing robots in forestry

Richard Parker

Richard Parker is a Senior Scientist at Scion in Christchurch.  His research focuses on difficult, dangerous and essential occupations such as forest harvesting and rural fire fighting from the perspectives of human factors and technology.  

Richard is involved in the development of novel robots for forest operations and the human factors of forest work. He was a tree faller and breaker out in a former life.  He is also leads research on rural fire fighter performance and new technologies for fire detection and suppression and is a volunteer rural firefighter.

Delegates at LandWISE 2017: are we ready for automation? will hear Richard say that robotics is inevitable in forestry as specialised machines for forest tasks are developed.  The mining industry already has a history of robot development and automation and forestry is learning from their experience. However, forestry has particular challenges – much of the commercially forested land in New Zealand is on steep and remote terrain. 

Forest harvesting operations have been traditionally considered physically demanding and potentially dangerous, with forest workers on foot exposed to heavy and fast-moving trees, logs and machinery.  Many tasks in forestry have already been mechanised to reduce hazards to the worker and increase productivity.  For example, the axe was replaced by the chainsaw, which was replaced by the excavator based harvesting machine.  However large machines can damage the sensitive forest soils and cannot work on steep terrain where many forest grow.  This presentation will discuss the next stage of forest machine development which uses the standing trees for support.

Animals have lived in the trees for millions of years and have developed behavioural, structural and physiological adaptations to the arboreal environment.  Some animals move slowly from branch-to-branch like the stick insect.  Others, such as gibbons, can move rapidly using brachiation, engaging in the arboreal equivalent of running through the forest from branch to branch.  An opportunity exists to use this form of locomotion, although more slowly than gibbons, for the movement of forestry machinery. 

The proposed machine could always stay above ground moving from tree-to-tree using the trees for support. The machine would eliminate the problem of soil disturbance and would not be limited by terrain steepness.

Bottle Lake Trial Robot

With funding from Scion, the Ministry for Primary Industries and the Forest Growers Levy Trust, the concept of a tree-to-tree forestry machine became real.  Scion and University of Canterbury Mechanical Engineering and Mechatronics students built a working radio controlled tree-to-tree locomotion machine. Development of a real machine demonstrated that being independent of the ground makes operator control easier because the ground conditions (holes, rocks, loose soil) do not have to be adjusted for.

Soil to sprinkler, automating irrigation management

Anthony (Tony) Davoren is a Director of Aqualinc with responsibility for the HydroServices business unit that provides irrigation and environmental management services; soil moisture, and water level and water meter monitoring. 

Tony’s expertise in and knowledge of soils and hydraulic properties, irrigation systems and design, and crop water demand has been applied and enhanced over the last 35 years working in these fields.

We asked Tony to talk about automating irrigation – from the soil to the sprinkler and round again. He’s doing just that at LandWISE 2017: Are we ready for automation?

Tony says several questions need to be asked and honest answers or solutions given:

  • Are we and you ready?
  • What do we need?
  • Is automating irrigation management wise or the right solution?

Are we or you ready?

When considering automating irrigation management, both the provider and the user must be an “innovators”; i.e. they must be in the top 2.5% of the industry.  It may be that some “early adopters”, the next 13.5% of the industry, might be ready for the technology and its application to automate irrigation management.

What do we need?

Because it will be the innovators who adopt and field prove any technologies, these technologies must be robust and proven with a sound scientific backing.  Innovators will identify the financial benefits of the automation, which needs:

  • Well-designed irrigation systems
  • High uniformity irrigation systems
  • Well maintained irrigation systems
  • Precise soil moisture and/or crop monitoring systems
  • Interface “model” to irrigation controller

Are these all in place?

Is automation wise or the right solution?

Tony established HydroServices providing on-farm irrigation management services based on in situ soil moisture measurements in Canterbury, Pukekohe, Waikato, Gisborne, Hawkes Bay, Manawatu, Wairarapa and Central Otago. During this he provided specialist soil moisture monitoring for Foundation for Arable Research, LandWISE, Crown Research Institutes, Regional Councils, Clandeboye Dairy Factory and others.

Tony completed his PhD in Engineering Science at Washington State University, Pullman, USA.

Supporting digital innovation

We are delighted that Dr Amanda Lynn is confirmed as a key speaker at our Annual AgTech Conference LandWISE 2017: Are we ready for automation?

Amanda’s focus for this event is on moving “change” away from something that happens to us, to something we do as a natural part of our personal, business, economic and social development. This is called “purposive change” and she will explain how we create, adapt and integrate it.

When we talk about change we often do so without a clear idea of what is meant, and without recognition of our own—individual and collective—roles in adapting to change, or even catalysing it. 

We seldom talk about levels of change and processes of development; instead, getting caught in black and white terminology like “disruption” and forgetting that change is natural, incremental and evolutionary. 

Innovation is purposive change.  We can sometimes forget that purposive change is something we—people—are very, very good at.  And there’s a lot of us; resulting in a lot of purposive change. 

The Executive Director of the Innovation Partnership, and Chair of the Innovation Partnership Forum,  Amanda specialises in development. 

The Innovation Partnership is a not-for-profit Trust.  Sponsored by Google, Chorus and InternetNZ, the Innovation Partnership connects businesses, educators and Government entities to support digital innovation. 

In addition to working with the Innovation Partnership, Amanda leads her own contracting enterprise, Mandolin Associates, undertaking public speaking, research and advisory services, and through this has worked closely with some of New Zealand’s leading agriculture and aquaculture innovators. 

Amanda is a member of the New Zealand Association of Economists, and a Professional Member of the Royal Society of New Zealand.

Is the Juice worth the Squeeze?

Chris Roberts

Chris Roberts, Head of Industrial Robotics at Cambridge Consultants UK is confirmed as a keynote speaker for our Annual Conference. LandWISE 2017: Are we ready for automation?

Cambridge Consultants is a world-class supplier of innovative product development engineering and technology consulting with more than 500 staff including scientists, mathematicians, engineers and designers.

Chris was one of the presenters at AgriTech-East’s Robotics Pollinator in October 2016, which Dan attended as part of his Trimble Foundation Study Trip investigating farm robotics.

“I was really impressed with Chris and his presentation. He worked clearly  and methodically through the issues that need very careful consideration.” 

In this presentation Chris will take a look at the prospects for robotic fruit harvesting, an issue of note in New Zealand as production levels rise and labour availability reduces.

Some of Chris’ questions:

  • Automation has existed in agriculture for decades: what’s new?
  • Why hasn’t it happened everywhere already?
  • Which tasks to automate?
  • What has to come together for a  successful harvesting robot?

Chris will address these questions and more at LandWISE 2017.

Hyperspectral imaging to map species distribution

Tommy Cushnahan is a PhD student at Massey University within the NZ Centre for Precision Agriculture.

Tommy is presenting some of his research at LandWISE 2017: Are we ready for automation?

Remotely sensed hyperspectral data provides the possibility to categorise and quantify the farm landscape in great detail, supplementing local expert knowledge and adding confidence to decisions.

In his presentation, Tommy will explain how hyperspectral aerial imagery is being used to classify various components of the hill country farming landscape. He focuses on development of techniques to identify and classify various vegetation components including water, tracks/soil, Manuka, scrub, gum, poplar and other tree species. 

Tommy’s PhD has been funded by Ravensdown and MPI as part of the PGP project “pioneering to precision”.  A background in agronomy and 15 years’ experience in golf course design, construction and project management has developed an array of real-world skills that has helped shape his research. His goal is for his work to produce tangible benefits for hill country farmers.