Category Archives: Research

LandWISE 2019: A Closer Look at Orchard Drainage

Orchard drainage isn’t just about shedding excess surface water quickly – although that is the main aim. Effective orchard drainage mitigates wheel rutting in the interrow which contribute to slips, trips and falls of orchard staff, and restrict orchard access by machinery at critical times of the year (such as harvest).

At LandWISE 2019 we will be taking a closer look at orchard drainage – and the tools and technology that are making it possible in existing orchards.

First up on the programme for Session 3 will be a progress update from Year 1 of Smart Tools for Orchard Drainage. From surveying growers, to analysing LiDAR data, and mapping puddles, there has been considerable progress made preparing for the land levelling work. We look forward to sharing this with conference delegates at LandWISE 19.

Ponding and Puddling: Comparing survey and computer generated ponding maps and the locations of puddles (white dots) after a rain event.

Following on from the project update, will be an in-depth presentation about the technical side of mapping land contours.

Technologies that have made the orchard drainage project possible include:

  • LiDAR (Light Detection And Ranging) a remote sensing method using a pulsed laser light to determine the distance to the earth from an aircraft that enabled us to create contour maps of existing orchards
  • ESRI ARC GIS, OptiSurface and other software packages for analysis and planning
  • RTK-GPS and drainage surveying and implementation software
  • SBAS (Satellite Based Augementation System) which allows us to get very accurate location on our smartphones when scouting

These technologies have a range of applications for horticulture, and have huge potential to improve the precision of our operations – whether in crops, orchards, or vineyards.

RTK-GPS mounted on qud bike and quad tractor (the funnest survey tool ever).

We’ll have our newly developed RutMeasurer available for viewing at the Field Session. We are using it toaccurately measure ruts in orchard inter-rows, and will be able to repeat measurements over time to assess the effectiveness of the different rut fixing approaches taken.

RutMeter – designed for the project to measure the depth and length or inter-row ruts
RutMeter in action at T&G orchard

We are looking forward to seeing you at LandWISE 2019. More info here, and the draft programme here.

Make sure you’re registered! – tickets available here.

 

Weed Workshop – 2019 technical session

On the 24th May, a small group of leading researchers, farmers, and tech developers will come together at the LandWISE MicroFarm to discuss New Strategies to Manage Weeds. The discussion will centre around the challenges with existing weed management. These challenges include herbicide resistance becoming increasingly more common, international markets demand increasingly lower chemical residues, and consumer and community expectations of low environmental impact.

In a new MBIE and FAR funded AgResearch project “Managing Herbicide Resistance” alternative weed control technologies will be trialled and monitored – with the aim of managing ryegrass in arable crops. Some of these technologies being researched and demonstrated in the Technical Session are:

Hot Foam Weeding

Weedingtech’s FoamStream Machine – Using Hot Foam to Kill Weeds

Abrasion Weeding

Frank Forcella’s Abrasion Weeder – Using Walnut Shells to Blast Weeds

Electric Weeding

The Weed Workshop will be a collaborative session where farmers can express the operational challenges they face day-to-day, and scientists can understand the areas of research needed to tackle them. Technology developers in the weed management sector will provide valuable knowledge and insight in bridging the gaps.

If you’re interested in applying to attend the Weed Workshop on Friday the 24th May please contact us here – there are limited spaces available.

LandWISE 2019: Brad Bernhard

Alternative fertiliser application methods

Brad Bernhard was born and raised on his family’s hog and grain farm in northern Illinois. We were introduced to him via a fascinating webinar that included the benefits of applying liquid fertiliser to create high N concentration directly in the plant’s rooting zone.

Brad earned his Master’s degree under the advisement of Dr. Fred Below in the Crop Physiology Laboratory studying the use of innovated foliar micronutrient sources in high yielding corn and soybean production systems.

Recently, Brad completed his Ph.D. degree in Crop Sciences focusing on in-season fertility using different fertilizer sources and application methods. In addition, he investigated ways to manage higher corn planting densities using narrower row spacings along with characterizing hybrids for use in these more intensive cropping systems.

Y-drops; a new way to apply nitrogen to row crops (Brad Bernhard image)

We think this approach has great potential for a wider range of crops, including winter vegetables, but have no doubts that it is not a case of a simple switch. We asked Brad to join speakers at LandWISE 2019 to share his experiences and (perhaps) warn us of some of the fishhooks he encountered along the way.

Regenerative Agriculture – Research Programme to Explore New Pathways for Growers and Farmers

Manaaki Whenua – Landcare Research is leading a new research proposal called Regenerative Agriculture, and is looking for a variety of growers and farmers to participate.

The research proposal is seeking government funding to bring together cutting edge science and innovative farming practices that will deliver:

  • Greater profit for farmers and growers
  • Superior quality food and fibre
  • Reduced environmental impact
  • Resilience for farms, businesses, and families
  • Capability planning for extreme weather events

If you are a farmer or grower interested in being a part of this project, register your details here: https://goo.gl/forms/EPnTIgUfnNVA906o1

This research project will measure a large host of on-farm indicators of environmental, economic, and social sustainability. For the full list see: https://www.facebook.com/WhereToForNZagriculture

Environmental sustainability measurements will comprise soil and biodiversity values. Soils will be assessed by measures of: soil structural qualities, soil function, and soil toxicity. Biodiversity will be assessed by: earthworm counts, bird, insect, and aboveground plant species richness, abundance of root symbiotic fungi and much more…

Economic sustainability will be assessed through the farm profit metrics of plant DM per ha, and $ revenue/DM less input cost.

Production quality will be monitored in forages and crops through dry matter, total fat and protein content, vitamin C and E concentration, available carbohydrates, as well as heavy metal content. Aspects of food safety will also be included such as pesticide and herbicide residuals in forages and crops. Animal welfare measurements will be included in pastoral systems, via physiological oxidative stress of grazing animals.

Finally, wellbeing (a contributor to social sustainability) will be assessed via a multiple choice questionnaire for farmers to complete. For the full list of measurements to be included in this study, please go to: https://www.facebook.com/WhereToForNZagriculture/photos/rpp.419655358790231/419661105456323/?type=3&theater

These measurements will be free, and available to the farmer or grower as they are collected.

For organisations, businesses, scientists, or other non-farming individuals wanting to participate in the Regenerative Agriculture project, register your interest here: https://goo.gl/forms/2leCr8nbrrDbTESl2

For more information, please contact Gwen Grelet at GreletG@LandcareResearch.co.nz

Fertiliser Calibration Assessments

One of the four key areas within the Future Proofing Vegetable Production project aims to improve the accuracy of fertiliser applied. This work is part of the MPI Sustainable Farming Fund “Future Proofing Vegetable Production” project, co-funded by Horizons Regional Council, Potatoes NZ, Gisborne District Council, Ballance AgriNutrients and LandWISE.

Growers were invited to participate in having their equipment assessed. Equipment was tested with growers in both Horowhenua and Gisborne. Ten fertiliser applicators have been assessed through working with eight growers. Multiple settings or products were tested for some equipment.

In-Field Fertiliser Applicator Calibration Test

Performance assessment of fertiliser application equipment provides information on actual rates applied and the evenness of application. Ensuring that fertiliser is applied evenly minimises the risk of leaching if over application occurs, or the risk of yield penalties if under application occurs where nutrient availability is limiting plant growth. Growers were confident their equipment was spreading evenly, however the assessment results show there is room for improvement.

Fertiliser application equipment measured can be split into two main categories:

  1. Broadcast fertiliser spreaders (spinning disc, oscillating spout)
  2. Direct placement machines (banders, side dressers and planters)
Figure 1: Examples of fertiliser application methods commonly used in vegetable growing systems: broadcast (left), potato planter (centre), and modified into 2 row bander (right)

Methodologies

Different methodologies are appropriate for broadcast versus direct placement equipment.

  • Broadcast fertiliser spreaders were tested according to the FertSpread Protocol: see www.fertspread.nz
  • Power take off driven placement equipment (banders or adapted oscillating spouts) were assessed by placing buckets under the outlets and collecting fertiliser for a measured time (~30 – 60 Seconds). By determining travel speed the application rate can be calculated.
  • Ground driven equipment (most side dressers and planters) were assessed by collecting fertiliser from outlets over a set distance in-field or from 20-wheel rotations in static testing.

Tests were repeated twice, however where results between tests appeared quite different, the test was repeated up to six times. For some machines multiple settings or fertiliser products were tested.

Direct placement machines were assessed using a calibration calculator that has been developed over the period of testing this equipment as there is currently no industry accepted assessment calculator available.

The draft fertiliser calibration calculator for the assessment of direct application machines is included in the supporting documentation. This spreadsheet calculates and reports a wide range of statistics to assess performance.

Three key performance indicators are suggested:

  1. Target application rate vs. actual rate applied
  2. Variation between outlets/spouts
  3. Variation between test runs

Results

The application variability of the direct placement equipment tested varied quite markedly; from 0.4% CV to 26.4% CV.  A summary of the test results for direct application equipment is provided in Table 1.

Table 1

All but one of the machines tested are within the SpreadMark accepted performance for broadcast spreaders applying nitrogen-based fertilisers.

The actual rates of fertiliser applied varied from the target rates. In one case the actual average rate applied was 48% of the target rate, the greatest over application was 152% of the target rate.  

Fewer broadcast spreaders were assessed as direct placement machines are more commonly used in intensive vegetable production systems. Table 2 provides a summary of the two broadcast spreaders assessed.

Table 2

Figure 2 gives a snapshot of part of the report produced through the FertSpread website. In this example, if the grower reduced their bout width from 22.5m to 19m, the machine performance would be within the acceptable level for nitrogen and non-nitrogen fertilisers.

Discussion

Assessments have been completed on a range of fertiliser application equipment in both Levin and Gisborne. Most of the equipment tested has been direct application (banders, planters and side dressers), rather than broadcast spreaders. Fertiliser applications for vegetable production are predominantly applied as banded strips along the bed or scarified during planting or as a side dressing. There is currently no accepted protocol for the assessment of this type of equipment.

Direct fertiliser application (banders, side dressers)

To enable the assessments to be completed within the project, a draft protocol and fertiliser calibration calculator for direct applicators has been developed and is being refined. This is currently in an Excel spreadsheet which has been developed as we have been testing equipment. The number of tests required and the statistical analysis to report the suggested three key indicators is still to be discussed and agreed upon. This concept and draft calculator will be taken to the annual Fertiliser and Lime Research Centre conference in February 2019 for advice from leading experts. The acceptable level of equipment performance and report outputs provided to growers will be discussed.

It is currently accepted for broadcast fertiliser spreaders that the coefficient of variation, CV, should not exceed 15% for nitrogen fertilisers and 25% for non-nitrogen fertilisers. The method of calibrating fertiliser rates applied ‘through the spout’ to achieve target rates are accepted, however a different statistical analysis is required for an assessment to be completed and best practice or acceptable levels of variation need to be defined. It is suggested that a CV of 15% for nitrogen or even non-nitrogen fertilisers is well below the capability of these direct placement applicators. Machinery in good working order should achieve a CV of much lower than this, but an acceptable CV is not currently defined.

This has opened discussion around how the acceptable CV is determined and if this is applicable in vegetable production systems. Our understanding is that accepted variance is based largely on pasture value and response curves, we query what values are appropriate for high value vegetable crops. Excess fertiliser increases leaching risk, insufficient fertiliser can make a crop unsaleable through quality loss. This is another area that it is felt important and worth further investigation.

The results of the tests carried out on direct placement equipment highlighted several key areas to address:

  • The target rate is not often achieved, the results showed machines are both over and underapplying, which have implications for leaching risk and potential marketable yield penalties or decrease nutrient use efficiency.
  • In some cases, the outlets are not applying fertiliser at equal rates. The cause of this is different for each machine. However, the growers were keen to investigate why one outlet was applying a lower rate. In one case the grower was able to fix the equipment and significantly reduce the variation between outlets.
  • One machine resulted in different rates being applied in each test. This is a greater concern for older equipment that is worn and manually operated hoppers.  
  • The amount of the fertiliser in the hopper appeared to affect the rate of fertiliser applied. This suggests that as the hopper empties that rate applied to the beds decreases. This also appeared to change significantly with the bulk density of the fertiliser product. More testing is required to investigate this further. There may be a minimum amount of fertiliser (product/bulk density dependent) required to be in the hopper to achieve an even application.

The interest and engagement of growers through testing their equipment has built awareness. Once a protocol is developed, the spreadsheet will then be developed into a tool for growers. Prior to next season, workshops demonstrating how to calibrate equipment, use the tool and interpret the report will be run in Gisborne and Levin, with the possibility of visiting additional regions. Conversations with growers during visits have shown there is good support for an event.

Broadcast fertiliser spreaders

Broadcast spreaders are less commonly used, and only two-disc spreaders were assessed. The results showed that at the current bout width used neither machine was achieving an acceptable CV for nitrogen fertilisers. One of the two was on the limit of acceptable for non-nitrogen fertiliser products. This suggests that the growers need to change either settings and/or bout width to achieve an acceptable CV.

Reports are generated for all equipment we tested and distributed to growers. Some growers have requested that we re-test their equipment after they have made adjustments or prior to next season.

Vegetable Irrigator Assessments

Introduction

Irrigation assessments are important for ensuring the correct amount of water is applied to avoid yield lose due to moisture stress. However, excessive irrigation is a cause of nitrate leaching. A key aspect of our Future Proofing Vegetable Production project addresses keeping nutrient in the root zone. Through assessing irrigation uniformity and depth applied, machine and irrigation management can be improved.

This work is part of the MPI Sustainable Farming Fund “Future Proofing Vegetable Production” project, co-funded by Horizons Regional Council, Potatoes NZ, Gisborne District Council, Ballance AgriNutrients and LandWISE.

Methodologies

The irrigator assessments followed the ‘bucket test’ protocols as described in the Traveling Irrigator Performance Quick Test. In brief, buckets were place at 1m intervals across the path of the irrigator (see Figure 3). The speed of the irrigator was measured as it travelled over the buckets. Once the irrigator had passed over the buckets, the volume of water collected in each bucket was then measured. The data was entered into IRRIG8Lite software and reports generated.

Bucket test layout under a traveling boom irrigator assessed as prt of Future Proofing Vegetable Production project.

Results

All three irrigators tested were traveling booms. The performance assessment was carried out twice on one of the traveling booms. An example of the distribution graph is provided in Figure 4. Of the four tests completed, the distribution uniformity assessment for two were ‘adequate’ and two were ‘poor’. The distribution uniformity for the four tests were 0.72 and 0.75 for the ‘adequate’ performing machines and 0.6 and 0.45 for the ‘poor’ performing machines.

Example distribution graph from a traveling boom irrigator assessed as part of the project

Discussion

The results so far show that there is room for improvement in the performance of the irrigators tested so far. Higher than average rainfall has meant irrigation events have not been required as often so far this season. However, some growers briefly ran their irrigators to allow tests to be completed. We will continue to assess irrigators as we are able to access them over the coming months.

Survey of Drainage Problems in Orchards

The MPI Sustainable Farming Fund “Smart Tools to Improve Orchard Drainage” project was initiated in response to extreme weather conditions experienced by pipfruit growers in the late season (March – June) harvest of 2017. It is co-funded by New Zealand Apples and Pears Inc.

A survey conducted over 3 weeks in November and December of 2018 covered 2,238 hectares of pipfruit growing orchards. Conducting the survey with growers via face-to-face interviews produced a greater number and depth of answers, however certain details were still difficult to obtain. Many growers were hesitant to provide or lacked confidence in estimations of the extent and area of wheel rut damage as a result of poor drainage.

To help with consistent assessments, we created a four panel photo scale of drainage issues found in orchards (see below). Growers interviewed considered the scale realistic and relevant. They felt able to correctly match problems areas in their blocks to the photos, but differed in their assessments of how much of a problem it might be.

The key impacts on operations identified by the survey were predominantly categorised into three areas; tree health, access, and labour. Almost all orchardists surveyed believed that poor drainage was contributing to poor tree health (either visibly or evident through low yield) or causing tree deaths (up to 10% in one extreme example). Many orchardists remarked on wheel ruts resulting in staff injuries (due to ladder slips in mud, tripping, or the impact of driving over uneven surfaces). Labour availability was also affected in severe cases where orchard ponding and ruts were the reason some contracting groups did not want to work at those sites. In all cases where extreme damage was present, access for sprayers, and tractors hauling harvest bins was impeded, and occasionally impossible. This meant that costs were incurred as a result of delaying harvest windows, slowing the pace of operations, and risking greater levels of disease at an already busy time of year.

Situational factors common among the orchards studied included:

  • Frequent passes by heavy orchard machinery for many months of the year (7 – 11)
  • Low spots in the in the inter-row were the worst affected
  • Shaded canopies associated with 3D training and mature plantings

The area affected was 44% of the area surveyed (1,479 ha).

Tree Health

Tree trunk width comparison on a poorly drained block
left: high elevation spot, right: low elevation spot

Tree health suffers as a result of poor drainage and water-logging of the soil. This was evident in the Motueka and Richmond site visits, where trunk diameter was clearly smaller to the untrained eye in low spots where ponding and wheel ruts were severe. The same observations were made during site visits in Nelson and Hawke’s Bay.

Other important comments included a noticeably lower yield from trees where drainage problems were evident, and some bins where mud had covered fruit during harvest resulted in a greater number of fruit rots in post-harvest storage. One grower also mentioned that the fruit on Fuji varieties developed russet in the worst affected areas.

Access to the orchard is critical at certain times to complete operational tasks. Where an orchard has particularly severe drainage problems the wheel ruts may be so extreme that tractor or sprayer axles drag through the mud, meaning that they are stuck or unable to enter the block. This has led to some orchardists hiring helicopters to apply fungicides when application during a specific time window is crucial. This is an expensive exercise, and is unable to be utilised for insecticide sprays, as the application method is not effective at reaching the internal area of the canopy. The mud and ruts from poor drainage make harvesting difficult and time consuming as tractors require towing (by another or multiple tractors) out of the mud when they become stuck.

Modelling Drainage in Orchards

As part of the MPI Sustainable Farming Fund “Smart Tools to Improve Orchard Drainage” project co-funded by New Zealand Apples and Pears Inc., we have been modelling drainage on case study orchards in Hawke’s Bay and Nelson.

Aerial images can show orchard canopy differences and indicate where tree growth is slowed or trees have died. This can be the result of poor drainage.

Aerial image of Illawarra orchard in Gisborne showing visible areas of missing and sparse canopy

We obtained LiDAR elevation data from the Hawke’s Bay Regional Council and Gisborne District Council which allowed us to create very detailed contour plans in ArcGIS – provided to us by ESRI and Eagle Technologies. An example is shown here, using LiDAR from Gisborne.

Detailed contour map of apple block at Illawarra in Gisborne,
created from LiDAR data provided by Gisborne District Council

We can see that the block should drain from the high left (brown) corner to the low right (blue) corner. But when we examine the ground profile along the rows, we see the grade is not even.

Uneven grade along the inter-rows stops surface drainage, keeping soil wet for longer and creating conditions for pugging and wheel-track rutting.

A similar story is seen in the Hawke’s Bay case study orchard. Using HBRC LiDAR data, another contour map was made.


Detailed contour map of apple block at Evenden in Twyford,
created from LiDAR data provided by HBRC

Again, inspecting the ground profile shows areas where surface drainage is held up, keeping soils wetter for longer.

Profile of inter-row showing areas where surface drainage is held by rising contour.

Our next step is to survey blocks with high accuracy RTK-GPS, measuring the profiles on the ground. We can use these profiles to design new inter-row profiles, and determine what cut and fill will be needed to ensure the rows can drain effectively. We will mount the GPS antenna as high as we can to avoid trees blocking the satellite signals.

A GPS antenna mounted on a 2 m mast to avoid signal obstruction. We have a 3 m mast option for larger, older orchards. The aerial connects the rover GPS on the quad, to a base station that determines and corrects for signal shift to give best possible accuracy

Many thanks to all the people at Illawarra Orchard, T&G Orchards, Bostock Orchards and to GPS Control Systems for your continuing support with this project.

Herbicide Resistance

Herbicide resistant weeds are a real and increasing issue globally and evident in New Zealand. Herbicide resistant ryegrass is for example, a problem in both arable farms and vineyards.

Atrazine resistant Amaranthus (Trevor James photo)

We are working with Trevor James and AgResearch in a project focused on improved weed control and vegetation management to minimise future herbicide resistance. The project is funded through the Ministry of Business, Innovation and Employment (MBIE) and major co-funder, the Foundation for Arable Research (FAR).

The project has four main work areas:

A Lincoln University team is seeking to identify the weeds most likely to develop herbicide resistance in new regions. Outputs will be a risk index that indicates weeds with a history of herbicide resistance, herbicide resistant weeds that pose the greatest risk if introduced and weeds that have a high likelihood of becoming resistant.

An AgResearch team seeks to identify and describe the drivers of on- and off-farm herbicide practices to more successfully address factors across the supply/value chain that increase the risk of herbicide resistance.

Grasslands and Massey University researchers will develop genotyping and seed bioassays to create ‘quick tests’ for resistance in key weed species. They will also model spread scenarios for resistance genes to determine the greatest risk of resistance i.e. from resistance developing on-site or from dispersal of resistant weeds. They are starting with perennial ryegrass before adding other species for screening.

We are in a team led by Trevor James looking to develop new non-herbicidal interventions (e.g. robotic weeders, abrasion technologies and smart cultivators) and the use of cover crops (in collaboration with FAR) for both managing existing and avoiding new instances of herbicide resistance.

Included in this section is ‘rediscovering’ Māori management practices such as traditional strategic resting and natural pathogenic organisms to target the soil weed seed bank. While virtually all our problem weeds are introduced from Europe and the Americas, the holistic approaches typical in Māoridom seem fully relevant to a systems based approach to weed management. A second group in this team is to isolate and evaluate natural pathogenic fungi and bacteria for their ability and efficacy to kill weed seeds.

LandWISE members are well-aware of the risks of herbicide resistance. It has been an aspect of LandWISE projects since the early 2000s when we began promoting strip tillage and no-till systems to maintain soil quality and reduce energy inputs. The extra pressure on herbicide controls when physical cultivation is reduced saw us publish charts of herbicide groups for different crops. Maybe it is time that work was brought up to date!

More information about this project is available on our project pages here>

Trials and Extension Role Available

With an increased work load, we’re looking for a self-motivated person to  join us. You’ll be curious about transforming agricultural practices, keen on technology and pragmatic. You’ll enjoy working with growers, researchers and tech folk. 

We’re not quite sure what to call the job: coordinator, advisor, officer? We know it offers diverse activities and needs excellent communication skills and practical knowledge of horticulture and technology. For the right person, this is a role with considerable potential to grow.

Your role will be to help run trials and extension activities and be part of identifying opportunities to improve economic and environmental performance in horticultural production.

We’ve just started new projects.

Our “Future Proofing Vegetable Production” project has a significant element of on-farm monitoring and field trials to help assess the realistic approaches fresh vegetable growers can take to reducing the loss of nitrates.  It includes using new techniques to monitor soil nitrate levels, running on-farm trials to test new approaches, calibrating fertiliser application and irrigation equipment and testing new nitrate mitigation techniques.

Our “Smart tools to improve Orchard Drainage” project is using high accuracy GPS to map and model orchard drainage, and control land shaping equipment to ensure surface water can flow off during heavy rain events.

The LandWISE MicroFarm has just been land levelled and we are monitoring the effect of that, while we wait for a new series of cropping trials over coming years. In the past we’ve tried manipulating peas, changing bean planting arrangements, and mapping onions from satellites, UAVs and tractors. Now we’ve got a list of public and private trials in waiting.

Previous LandWISE projects include precision mapping vineyards to increase juice quality,

testing a small autonomous weeding robot,

the impact of banding fertiliser rather than broadcasting it, and how changing irrigation nozzles can affect application uniformity.

We prepared guidelines and calculators to calibrate fertiliser spreaders,led work on soil quality, novel crop canopy assessment technologies and tested satellite-augmented GPS positioning.

And of course, we helped introduce RTK-GPS and Autosteer, pioneered strip tillage and worked to prevent wind erosion and improve soil resilience by adopting minimum tillage techniques.

If you think this is the job for you, please send us your CV and a letter explaining why you’re the perfect candidate. Applications close very soon on Thursday 20th September 2018. We look forward to hearing from you!

Job Description here>

Email a query