Category Archives: Soil

Technology to Reduce N Leaching

N-Leach_WorkshopThe Precision Agriculture Association NZ is presenting workshops focused on technologies available to help reduce nitrogen leaching. There are two North Island workshops being offered at:

Massey University on Thursday 1st September 2016 [PDF here]

and

Ellwood Centre, Hastings on Friday 2nd September 2016 [PDF here]

Programme

The ‘Technology to Reduce N Leaching’ workshops are similar to the well received program conducted in Ashburton in March 2016 and will address where we are and what we can do about nitrate leaching limits in a North Island context utilising a range of technologies and farm systems options.

The particular areas for focus for the program are:

  • Variable rate technologies and systems
  • Precision irrigation
  • Precision spreading systems and services
  • Soil mapping
  • Soil moisture monitoring, sensors, metering
  • Nutrient budgeting and environmental monitoring

A Q & A time slot is devoted in the afternoon session for attendees to interact with members and presenters on the day to share learnings and understandings about the issues. This will also be possible over the lunch break on both days with one and half hours devoted for this.

PAANZ2

Offer to PAANZ Members

As part of the Hastings program only on 2nd September, PAANZ members are offered the opportunity to participate as trade/sector participants for technologies and products as may be appropriate to support the program.

PAANZ is not able to offer trade/sector stand space at the Palmerston North venue due to space restrictions unfortunately so only the Hastings venue will be able to accommodate this option for members.

If you would like to participate please advise Jim Grennell, E-mail: jim@paanz.co.nz

Mobile: 021 330 626, places are limited to ten organisations for the Hastings workshop to be involved as a trade/sector participant so it will be on a first come basis.

The cost of participation will be $100.00 plus GST per stand with attendance fee of $100.00 per person additional.

As these are indoors Workshops, with a technology focus and space at the Hastings venue is limited no large equipment or hardware can be accommodated.

Confirmation of members wishing to take up this opportunity is required by Monday 22nd August 2016 after which time the opportunity to participate will be made available to non-members.

Onions – Plant and Crop Modelling

Understanding Variation in Onions and Potential Causes

Bruce Searle, Adrian Hunt, Isabelle Sorensen, Nathan Arnold, Yong Tan, Jian Lui   Plant and Food Research

Onion growth, development, quality and yield can vary significantly within a field. This can be observed as inter-plant variability, where two plants side by side or within very close proximity vary significantly in size and maturity or quality from each other. Additionally, spatial variability in between different areas of the field has been observed. Put these two scales of variability together and there can be significant reduction in yield and profitability for growers.

It has been estimated that a modest increase of yield from 45-50t/ha associated with a 10% reduction in size variability can increase gross margins by $1700 per hectare. Add to this the fact that variability in the field results in variability in bulb maturity and therefore storage losses, minimising variability has a strong value proposition for growers.

To minimise variability we need to know how much variability is present, what causes it and when it occurs. We used soil EM maps to identify four zones across an onion field. Within each zone we recorded variability in growth and development of individual plants to better understand plant to plant variability and how this affects overall yield variability within a field.

We also monitored crop characteristics such as leaf area across a plot and light interception to understand how yield accumulated across the different zones. Soil moisture and temperature was logged at different depths for the duration of growth.

Profit Mapping Variability in Onions

Profit Bands Across A Paddock

 Justin Pishief

Justin Pishief and Dan Bloomer
Centre for Land and Water

 

As part of the Onions NZ project “Benchmarking Variability in Onion Crops” a process was developed to generate yield and profit maps. This presentation explains the process using the example of a 7.3 ha paddock in Hawke’s Bay.

Data from a satellite image captured in late November were used to identify high, medium and low biomass zones.  Paddock yield samples were taken from these zones at harvest and used to generate a paddock yield map. The average yield of the paddock was estimated at 95 t/ha, with a predicted total field harvest of 669 tonnes. This compares to the grower recorded harvest of 614 tonnes.

The relative yield data were combined with grower supplied costs and returns to determine gross margins across the paddock. Data were mapped in ArcGIS and a Gross Margin map with five “profit bands” produced. The highest band had a mean Gross Margin of $11,884/ha compared to the lowest at $3,225/ha.

The breakeven gross margin yield is estimated to be 62.5 t/ha at current costs and prices. The estimated cost to business of low performing areas is $27,945, assuming the whole paddock could achieve the top band mean yield.

The poorest performing areas were identified by the grower as impacted by a failed council drain and areas of slowed drainage in the main paddock areas. An OptiSurface® assessment using historic HBRC LiDAR elevation data analysed of the impact of ponding on the site and also suggested ponding was a significant issue.

An OptiSurface® landform assessment was conducted using both single plain and optimised surface designs and the soil movement required to allow effective surface drainage was determined.

The assessment showed ponding could be avoided by land shaping with 224 m3/ha soil movement and few areas requiring more than 100 mm cut or fill. The cost is estimated at $2,000/ha or approximately $14,000 total.

MicroFarm Cover Crops Incorporated

oatsvsmustard

Many thanks to Nicolle Contracting and True Earth Organics for getting our winter cover crops incorporated today.

incorporatecovercrops

This winter saw a repeat of last year’s split planting of Caliente Mustard and Oats to compare effects on soil, disease and plant growth. Seed was provided by True Earth Organics.

To gain benefit from the fumigant properties of the Caliente, it must be soil incorporated as soon as possible. This is why we have the two tractors closely following, one mulching the crop, the other incorporating the residues.

Mulching mustard - reasonable biomass, but some insect damage reducing leaf mass
Mulching mustard – reasonable biomass, but some insect damage reducing leaf mass
mulchingoats
Mulching before incorporating oats

Onions are to be planted in this area for a third season in succession. Our onion crop will also include a new area that has never had onions planted before. As part of our collaboration with Onions New Zealand and Plant and Food Research, we will compare the performance of crops in the different areas.

Farmers getting value from soil EM maps

Chris SmithChris Smith
AgriOptics NZ Ltd

An electromagnetic (EM) soil conductivity Survey maps the variability in soils characteristics; these values are strongly influenced by many factors but mainly soil texture, soil moisture at the time of the survey as well as bulk density and salinity.

Combining this data with topography data collected at the time of the survey gives the farmer a powerful management tool for creating management zones for various aspects of his business, including amongst other things; managing water, zonal soil sampling, improving yield and pasture performance where soil characteristics are the limiting factors, managing inputs to targeted placement, highlighting and reducing the environmental impacts or risks.

AgriOptics has been conducting EM surveys since 2011, with various clients and in many differing scenarios and enterprises, covering over 20,000ha in that time.

This presentation explained what an EM survey is and what information the farmer receives from the service and how the different layers of data from that survey are being utilised by farmers in the South Island with both its direct and indirect uses, and how that translates into a dollar value to those clients.  Examples of both dairy and arable farmers each with not only common goals but their own specific issues and requirements were given.

Precision Agriculture in Tasmania

Where are we getting value?

RobbieToleRob Tole, Farmer
Greenvale Pastoral, Tasmania

Rob and his wife, Eliza, are now the fourth generation farming Greenvale, which was traditionally, a 100% dryland, prime lamb operation. It is now a diversified farming business with an extensive cropping program and a small breeding flock of crossbred ewes which are run alongside a lamb trading operation.

The farm has a long term average rainfall of 680mm and is now 60% covered with fixed pivot irrigators, reducing the risks of dry seasons. Soil types range from very heavy black canola running up to lighter sandy loams.

Over recent years, extensive development work has been put into practice.  Technology has been implemented into the farming system to gain efficiencies in production and labour, such as livestock handling equipment, variable rate irrigation, Fieldnet, RTK guidance NDVI images underground drainage and grid soil mapping.

The introduction of PA has been implemented over a decade but in recent years the adoption of VRI and NDVI has taken this to a new level. It dramatically altered the way we view our crop management and has opened up many opportunities to increase production but at the same time reduce inputs

The operation now has a well-balanced irrigation system complementing the cropping and lamb production, allowing turn off lambs all year round.

Investigating variability in potato crops

Sarah SintonLandWISE 2016 Conference presenter Sarah Sinton is a well experienced member of a Plant and Food Research group studying potatoes.

In the 2012-13 growing season the Plant and Food researchers surveyed commercial potato crops in Canterbury and confirmed grower concerns that a “yield plateau” of approximately 60 t/ha was common.  At this level, potato growing is becoming uneconomic.

Plant and Food Research computer-based modelling shows that yields of 90 t/ha (paid yield) are theoretically possible in the surveyed paddocks in most years. This shows a “yield gap” of about 30 t/ha.

The most important factors found to be reducing yield were soil compaction, the soil-borne diseases Rhizoctonia stem canker and Spongospora root galls.

DSC_4288sm
Tuber health, disease management, soil compaction and irrigation all have ability to reduce yields

Using CORE funding, Sarah and colleagues have been running a number of related trials, comparing field performance with modeled potential growth rates. They’ve used DNA to assess soil pathogens, applied a range of treatments and measured disease incidence and yields. They have also looked at the role of seed quality in potato emergence, variability and yield.

But it is not all about diseases. Soil compaction, structure and related issues such as aeration, drainage and water-holding show up as crop limiting factors.  Also implicated are irrigation management and weeds.

Potatoes NZ reports that the use of guidance technology and variable rate application based on soil testing is being undertaken but there is limited crop based management of inputs.  There may be opportunity to manipulate some inputs.

In paddock variability can be relatively easily identified using remote sensing equipment (both NDVI and Infrared) but there are three major problems with potatoes which are:

  • Remote sensing can identify differences in a paddock but these need to be ground truthed to determine what the reason for the difference is – e.g. canopy disease etc.
  • Often by the time a difference is apparent on a crop sensor map, even when it is ground truthed, growers cannot implement a management decision that will change the crop performance.
  • Yield maps are generally used as the baseline reference for Precision Agriculture and this is difficult and expensive to implement for potatoes.

Sarah is presenting some of her group’s work at LandWISE 2016. Look for “Investigating variability in potatoes”.

Excellent LandWISE 2016 Conference Speakers

We published the list and short biographies of our invited speakers today. We are again privileged to have an extremely knowledgeable group representing farmers, technologists and researchers from both sides of the Tasman Sea.

Conference keynotes and new LandWISE Australians include Ian Layden and Julie O’Halloran, precision horticulture researchers and extension specialists from the Queensland Department of Agriculture and Fisheries (DAF).

Ian and Julie are leading a group of two dozen top growers and agronomists for a week of related events built around the LandWISE Conference. Queensland farmer Ben Moore and Tasmanian farmer Robbie Tole will present their own experiences investigating precision horticulture opportunities.

Returning LandWISE Australians are Tristan Perez from Queensland University of Technology and John McPhee from the University of Tasmania. Tristan will update us on progress with weeding robot AgBot II and Harvey the capsicum picker. John will tell us about precision horticulture research underway in Tasmania.

Parallel work is being done in New Zealand. Look for reports from  Plant and Food researchers Sarah Sinton, Paul Johnstone and long serving LandWISE Board member Bruce Searle. Chris Smith from AgriOptics, Jane Adams of OnionsNZ and LandWISE’s Dan Bloomer and Justin Pishief will overlay a series of precision cropping and related topics.  Charles Merfield from the Future Farming Centre will give a review of biostimulants and related technologies – a different aspect of the agritech revolution.

Rounding out Day 1 are agritech accelerator Sprout Entrepreneur in Residence Stu Bradbury and two accelerating companies represented by Tom Rivett and Julian McCurdy.

Day 2 has a focus on value from data and robotics. We hear a lot about “big data” and “value chains”: what are they? Alistair Mowat, James Beech and Megan Cushnahan will tell us how they and others are getting real value, and where there’s still value to be tapped. Roger Williams will outline how Plant and Food is investing in digital horticulture research.

Lincoln Agritech’s Armin Werner has been a regular attendee at LandWISE. This year he takes the stage with a global review of field robotics and weeding technologies in particular. Kit Wong will tell us about Callaghan Innovation development of systems for machine vision to manage onion crops.

David Herries of Interpine will take us to a different sector and explain how UAVs are giving value in forest research and management.  And rounding it all up, Simon Morris of ALtus UAS will make sure we understand the regulations governing our use of this still new but very powerful technology.

So come to LandWISE 2016: the value of smart farming. Have you mind expanded, your knowledge updated and your excitement kindled. Mix and mingle with leaders in farming, agronomy and agtech!

Conference programme here>

Speaker biographies here>

Conference registration here>

 

Winter Cover Crops Established

This winter we have established both Caliente Mustard and Oats in paddocks 1 and 2, the site of our last two years of summer onions.

20160329_175140_OatsCalienteEst_web
Oats and Mustard well established 12 days after drilling

The ground had not had onions before 2014-2015 as far as we know. We grew our second crop in succession in 2015-2016.

Our plan is to grow onions for a third year, and to pay attention to the development of weeds, pests and diseases. Plant and Food Research reported some evidence of “Pink Root” in a few plants while harvesting samples of the 2015-2016 crop.

After harvest, Gerry and John Steenkamer ripped the beds, leaving the wheel tracks. This is step 1 of a route into permanent bed cropping at the MicroFarm.

Unfortunately, the alignment of the main AB line for the entire block did not match the buried drip irrigation installed some years ago, and it has been damaged beyond repair.

Mike Kettle Contracting drilling oats and mustard
Mike Kettle Contracting drilling oats and mustard

After ripping, Mike Kettle Contracting power harrowed the paddocks to about 100mm to reduce the rubbley surface. The Caliente and Oats were drilled by Kettle Contracting on 16 March.

We chose a split-paddock planting, with Caliente on the northern side and oats on the south. This repeats last winter’s pattern, so we will have two years of onions followed by either Caliente or Oats when we establish the 2016-2017 crop.

20160323_131043_Caliente_web
Caliente emerging on 23 March, 7 days after planting
20160323_131151_Oats_web
Oats emerging on 23 March, 7 days after planting

Many thanks to True Earth Organics for supplying the Caliente seed, and to G & J Steenkamer and Mike Kettle for groundwork and drilling.

 

Onion variability Year 1

OnionsNZ

Enhancing the profitability and value of New Zealand onions

The purpose of this OnionsNZ MPI Sustainable Farming Fund research project is to provide the industry with tools to monitor and manage low yields and variability in onion yield and bulb quality.

In this collaboration with Plant & Food Research, LandWISE is providing precision agriculture paddock scale measurement and interpretation.

We have base maps from topography and surface ponding analysis completed by Page Bloomer Associates, and from AgriOptics Dual EM soil mapping. We also have some previous crop data including true colour, false colour and NDVI images of winter cover crops between successive onion crops in these paddocks. More details here>

We tracked crop development with a range of sensor technologies including AltusUAS MicaSense from UAV, Agricultural Software GroundCover app and some satellite imagery.

The collaboration with Plant & Food Research was to help us develop protocols to monitor crop development and yield variation (spatially and temporally). Linking these with crop modelling and agronomy helps determine why variation is occurring.

Crops were traced from paddock through harvest and storage so that post-harvest quality issues can be related to factors during growth. Linking paddock production to packhouse performance and back again may be key in unlocking value potential.

Grower led focus groups are involved in the project and analysis of results. They have a vital role in the development of practical tools they can use to monitor and quantify variability, to identify the causes of loss of yield and quality and share best practice to improve sustainability and grower returns.