Robotics and Intelligent Systems to Improve Land and Labour Productivity

LandWISE 2015 Presenter, Robert Fitch

RobertFitch2

Robert Fitch and Salah Sukkarieh
Australian Centre for Field Robotics
School of Aerospace, Mechanical and Mechatronic Engineering
The University of Sydney, NSW Australia

Food production in the 21st century must respond to significant new pressures to increase quantity and nutritional quality. Because natural resources are limited, achieving such goals must involve improvements in production efficiency. At the same time, we must engage in environmental stewardship, contend with the rising cost and diminishing availability of human labour, and reverse the steady decline in the number of farmers worldwide.

Meeting these challenges will require major innovations in technology, farming systems, and operations enabled by advances in robotics and automation.

One of the leaders in agricultural robotics research is the Australian Centre for Field Robotics (ACFR) at The University of Sydney, recognised as one of the largest field robotics groups in the world. We conduct research using both ground and aerial robots that is helping to shape the future of farms.

Our collaboration with Queensland University of Technology (QUT) and start-up company SwarmFarm addresses the issue of soil structure damage from ever-larger tractors and implements by replacing a single large soil-compacting vehicle with many small vehicles that move lightly across the surface without compacting the soil or disturbing its protective top layer.

The Ladybird robot designed by the University of Sydney
The Ladybird robot designed by the University of Sydney

The potential for robot teams is also strong in integrated weed management strategies. The Ladybird is a prototype we designed and fabricated for the vegetable industry, supported by AusVeg. Beneath the outer shell is a manipulator arm that can be used to position a variety of implements for weed control, such as tines, microwave, grit-blasting, and steerable targeted spray.

The problem of detecting individual weeds is one part of our general framework for crop intelligence, where robots perform autonomous farm surveillance (mapping, classification, detection) for crop growth and health.

SydneyRobots
Two ground robots and one aerial robot used in tree crops supported by Horticulture Innovation Australia Ltd.

The farm of the future will not simply replace manual operation with autonomous operation, but instead will adopt a systems view that coordinates all activities and draws more people into farming.

Whole-farm optimisation can be seen as ‘thinking beyond the robot’ to restructure farm operations in terms of the timing and logistics of all activities, where individual crop elements have a ‘personality’ that is accurately tracked over the crop lifecycle.

The ACFR has a long history of working in large-scale operations and optimisation with various industry partners and are now beginning to apply the resulting successful methodologies to the agriculture domain.

 

 

 

Leave a Reply